Lorentz Group From an Undergrad Student

Caio César Rodrigues Evangelista

Contents

1 A First Sight At The Lorentz Group 3
1.1 The Lorentz Group 3
1.2 Representation Theory and The Lorentz Group 4

Chapter 1

A First Sight At The Lorentz Group

1.1 The Lorentz Group

Let there be the set of all matrices 4×4 denominated by \mathcal{L} equipped with matrix multiplication as a operation such that the metric is preserved, i.e, the following expression is satisfied:

$$
\begin{equation*}
\Lambda^{T} \eta \Lambda=\eta \tag{1.1}
\end{equation*}
$$

$\forall \in \mathcal{L}$ such that $\eta=\operatorname{diag}(-1,+1,+1,+1)$
Notice how this set \mathcal{L} is closed since by taking arbitrary $\Lambda_{1}, \Lambda_{2} \in \mathcal{L}$.

$$
\begin{gathered}
\Longrightarrow\left(\Lambda_{1} \Lambda_{2}\right)^{T} \eta \Lambda_{1} \Lambda_{2}=\eta \Longleftrightarrow \Lambda_{1}^{T} \Lambda_{2}^{T} \eta \Lambda_{1} \Lambda_{2}=\eta \\
\Longleftrightarrow \Lambda_{2}^{T} \Lambda_{1}^{T} \eta \Lambda_{1} \Lambda_{2}=\eta
\end{gathered}
$$

See that in the above equation we've just obtained $\Lambda_{1}^{T} \eta \Lambda_{1}$ which by our initial restriction $\Lambda_{1}^{T} \eta \Lambda_{1}=\eta$ which directly implies,

$$
\Lambda_{2}^{T} \Lambda_{1}^{T} \eta \Lambda_{1} \Lambda_{2}=\eta \Longleftrightarrow \Lambda_{2}^{T} \eta \Lambda_{2}=\eta \quad \forall \Lambda \in \mathcal{L}
$$

Looking back to the equation (1.1) and taking its determinant on both sides, we can clearly draw some conclusions.

$$
\begin{gathered}
\Lambda^{T} \eta \Lambda=\eta \Longleftrightarrow \operatorname{det}\left(\Lambda^{T} \eta \Lambda\right)=\operatorname{det} \eta \\
\Longleftrightarrow \operatorname{det} \Lambda^{T} \operatorname{det} \eta \operatorname{det} \Lambda=\operatorname{det} \eta \Longleftrightarrow \operatorname{det} \Lambda^{T} \operatorname{det} \Lambda=1
\end{gathered}
$$

Making the assumption that $\Lambda^{T}=\Lambda$,

$$
\begin{gather*}
\Longrightarrow(\operatorname{det} \Lambda)^{2}=1 \\
\therefore \operatorname{det} \Lambda= \pm 1 \tag{1.2}
\end{gather*}
$$

So \mathcal{L} has a group structure, the so called Lorentz Group, but we shall restrictic ourselves only to the subset of \mathcal{L} such that $\operatorname{det} \Lambda=1 \forall \Lambda \in \mathcal{L}$ that also is equipped of a group structure. This subset with group structure has a name, it is denominades as the $\mathbf{S O}(\mathbf{1}, \mathbf{3})$.

Definition 1.1.1 (Lorentz Group). The Lorentz Group with restriction det $\Lambda=1$ is called the Special Orthogonal Group of 4×4 matrices.

$$
\mathbf{S O}(\mathbf{1}, \mathbf{3})=\left\{\Lambda_{4 \times 4} ; \Lambda_{v}^{\mu} \in \mathbb{R}, \Lambda^{T} \eta \Lambda=\eta, \operatorname{det} \Lambda=1\right\}
$$

1.2 Representation Theory and The Lorentz Group

Definition 1.2.1 (Representation). A representation of a group G is a homomorphism, i.e, a surjective map, from G to $G L(V)$.

$$
\forall g \in G ; g \rightarrow D(g) \in G L(V)
$$

Properties of a Representation:

Property 1. Multiplication: $D\left(g_{1}\right) D\left(g_{2}\right)=D\left(g_{1} g_{2}\right)$
Property 2. Identity Element: $D(e)=\mathbb{1}$
Property 3. Inverse Element: $D\left(g^{-1}\right)=[D(g)]^{-1}=D^{-1}(g)$
Property 4. Associativity: $D\left(g_{1}\right)\left(D\left(g_{2}\right) D\left(g_{3}\right)\right)=\left(D\left(g_{1}\right) D\left(g_{2}\right)\right) D\left(g_{3}\right)$
Definition 1.2.2 (Reducible Representations). A representation D exists if there exists a subspace U, s.t, $U \neq 0$. So for every reducible representation we can write the following:

$$
D(g)=\left(\begin{array}{ccccc}
D\left(g_{1}\right) & 0 & 0 & \cdots & 0 \\
0 & D\left(g_{2}\right) & 0 & \cdots & 0 \\
0 & 0 & \ddots & \cdots & 0
\end{array}\right) \Longleftrightarrow D(g)=D\left(g_{1}\right) \oplus D\left(g_{2}\right) \cdots
$$

Otherwise, $D(g)$ is a irreducible representation.
Notice how irreducible representations are way more fundamental and therefore hugely interesting in mathematical terms of a physical theory.

One of the most important representations when talking about Lie Groups is the idea of a exponential map

Definition 1.2.3 (Exponencial Map). The representation of each of the group elements expressed as a function of parameters $\alpha_{i} \in \mathbb{R}$, s.t, each parameter is associated with a generator.

$$
D(\alpha)=e^{i \alpha_{i} X_{i}}
$$

X_{i} are the generators related of the respect Lie Group, which follow a Lie Algebra.

We can further investigate $\mathbf{S O}(\mathbf{1}, \mathbf{3})$ by taking its exponential map representation.

$$
\begin{equation*}
D(\Lambda)=e^{i \omega} \tag{1.3}
\end{equation*}
$$

Looking back at equation (1.1),

$$
\begin{gather*}
\Lambda^{T} \eta \Lambda=\eta \Longleftrightarrow \Lambda^{T} \eta \Lambda \Lambda^{-1}=\eta \Lambda^{-1} \Longleftrightarrow \Lambda^{T} \eta=\eta \Lambda^{-1} \Longleftrightarrow \eta^{-1} \Lambda^{T} \eta=\eta^{-1} \eta \Lambda^{-1} \\
\therefore \eta^{-1} \Lambda^{T} \eta=\Lambda^{-1} \tag{1.4}
\end{gather*}
$$

Now taking equation (1.4) and applying the exponencial map,

$$
\begin{equation*}
\eta^{-1}\left(e^{i \omega}\right)^{T} \eta=\left(e^{i \omega}\right)^{-1} \Longleftrightarrow \eta^{-1} e^{i \omega^{T}} \eta=e^{-i \omega} \tag{1.5}
\end{equation*}
$$

One of the properties of matrices as exponents is:

$$
\begin{equation*}
e^{A^{-1} B A}=A^{-1} e^{B} A \tag{1.6}
\end{equation*}
$$

Therefore applying (1.6) in (1.5) results in

$$
\begin{gather*}
\eta^{-1} e^{i \omega^{T}} \eta=e^{-i \omega} \Longleftrightarrow e^{i \eta^{-1} \omega^{T} \eta}=e^{-i \omega} \\
\Longrightarrow \eta^{-1} \omega^{T} \eta=-\omega \Longleftrightarrow \eta \eta^{-1} \omega^{T} \eta=-\eta \omega \\
\therefore \omega^{T} \eta=-\eta \omega \tag{1.7}
\end{gather*}
$$

This restriction from above directly implies that the matrix ω necessarily is made of a symmetric and a anti-symmetric part, then, it can be written as

$$
\omega=\left(\begin{array}{cccc}
0 & a & b & c \tag{1.8}\\
a & 0 & 0 & 0 \\
b & 0 & 0 & 0 \\
c & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & d & e \\
0 & -d & 0 & f \\
0 & -e & -f & 0
\end{array}\right) ; a, b, d, e, f \in \mathbb{R}
$$

But the above expression still can be simplified in a way more compact way.

$$
\begin{equation*}
\omega=a T_{a}+b T_{b}+c T_{c}+d T_{d}+e T_{e}+f J_{f} \tag{1.9}
\end{equation*}
$$

such that

$$
\begin{gather*}
T_{a}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), T_{b}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), T_{c}=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \tag{1.10}\\
T_{d}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), T_{e}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right), T_{f}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right) \tag{1.11}
\end{gather*}
$$

Previously we had the restriction on equation (1.3), since $\operatorname{det} \Lambda=1$ and $\operatorname{det} \Lambda=\operatorname{det} e^{i \omega}=1$. However $\operatorname{det} e^{i \omega}=e^{i \operatorname{Tr} \omega}=1$ which makes $\operatorname{Tr} \omega=0$. Making use of index notation for a mathematical object with two indices and using the fact that the whole ω matrix is anti-symmetric, then $\omega^{\alpha \beta}=-\omega^{\beta \alpha}$. In a very similar way it is possible to enumerate the matrices $J_{a}, T_{b}, T_{c}, T_{d}, T_{e}, T_{f}$

$$
\therefore \begin{cases}T_{a} \equiv T_{01} & T_{d} \equiv T_{12} \tag{1.12}\\ T_{b} \equiv T_{02} & T_{e} \equiv T_{13} \\ T_{c} \equiv T_{03} & T_{f} \equiv T_{23}\end{cases}
$$

A important thing to notice is how we can completely rewrite the ω matrix in terms of repeated indices,

$$
\omega=\left(\begin{array}{cccc}
0 & \omega^{01} & \omega^{02} & \omega^{03} \\
\omega^{01} & 0 & \omega^{12} & \omega^{13} \\
\omega^{02} & -\omega^{12} & 0 & \omega^{23} \\
\omega^{03} & -\omega^{13} & -\omega^{23} & 0
\end{array}\right)
$$

When performing the sum in index notation of equation (1.9) a factor of 2 appears on the right-hand of the equation, so get rid of it, we divide by a factor of 2 on both sides of the equation. With all of that in mind we can finally write in compact notation the ω matrix.

$$
\begin{gather*}
\omega=\frac{1}{2} \omega^{\alpha \beta} T_{\alpha \beta} \tag{1.13}\\
\Longrightarrow D(\Lambda)=e^{\frac{i}{2} \omega^{\alpha \beta} T_{\alpha \beta}} \tag{1.14}
\end{gather*}
$$

See that the ω matrix is part of a linear vector space, which allow us as already verified on equation (1.9) that every ω can be written as a linear combination of the $T_{\alpha \beta}$ matrices. By the definition 1.2.3, $T_{\alpha \beta}$ are the generators of the group, since generators follow a Lie Algebra, there comes the related Lie Algebra of the $\mathbf{S O}(\mathbf{1}, \mathbf{3})$ group.

$$
\begin{equation*}
\therefore \mathfrak{s o}(1,3)=\left\{\left.\omega=\frac{i}{2} \omega^{\alpha \beta} T_{\alpha \beta} \right\rvert\, \omega^{\alpha \beta}=-\omega^{\beta \alpha}\right\} \tag{1.15}
\end{equation*}
$$

