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Chapter 1
A First Sight At The Lorentz Group

1.1 The Lorentz Group

Let there be the set of all matrices 4x4 denominated by £ equipped with matrix
multiplication as a operation such that the metric is preserved, i.e, the following
expression is satisfied:

ATyA =1 (1.1)

V € £ such that = diag(—1,+1,+1,+1)
Notice how this set £ is closed since by taking arbitrary Ay, Ay € £.
= (MA) A Ay =17 = A[AJHA A, =1

= MAIAMA =7
See that in the above equation we’ve just obtained ATy A; which by our initial
restriction AlT /A1 = n which directly implies,
AIATY AN =1 = AlnAy =13 YAEL
Looking back to the equation (1.1) and taking its determinant on both sides,
we can clearly draw some conclusions.
ATyA =5 < det (ATUA> = dety

= detATdetydetA = detyy <= detATdetA =1
Making the assumption that AT = A,

— (detA)? =1

cdetA = £1 (1.2)

So £ has a group structure, the so called Lorentz Group, but we shall restric-
tic ourselves only to the subset of £ such that detA = 1 VA € £ that also is
equipped of a group structure. This subset with group structure has a name, it is
denominades as the SO(1, 3).

Definition 1.1.1 (Lorentz Group). The Lorentz Group with restriction det A =1
is called the Special Orthogonal Group of 4x4 matrices.

S0O(1,3) = {A4x4; A eR, ATyA =1, detA = 1}
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1.2 Representation Theory and The Lorentz Group

Definition 1.2.1 (Representation). A representation of a group G is a homomor-
phism, i.e, a surjective map, from G to GL(V).

Vg e G, ¢ — D(g) € GL(V)
Properties of a Representation:
Property 1. Multiplication: D(g1)D(g2) = D(g182)
Property 2. Identity Element: D(e) =1

-1
Property 3. Inverse Element: D(g™!) = [D(g)} =D"1(g)

Property 4. Associativity: D(gl)(D(gz)D(g3)> = <D(g1)D(g2)>D(g3)

Definition 1.2.2 (Reducible Representations). A representation D exists if there
exists a subspace U, s.t, U # 0. So for every reducible representation we can
write the following;:

D(g1) 0 0O --- 0
Digl=| 0 D(&) 0 -+ 0| «— D(g)=D(g1)@&D(g)- -
0 0 o 0

Otherwise, D(g) is a irreducible representation.

Notice how irreducible representations are way more fundamental and there-
fore hugely interesting in mathematical terms of a physical theory.

One of the most important representations when talking about Lie Groups is
the idea of a exponential map

Definition 1.2.3 (Exponencial Map). The representation of each of the group ele-
ments expressed as a function of parameters «; € IR, s.t, each parameter is associ-
ated with a generator.

D(a) = e

X; are the generators related of the respect Lie Group, which follow a Lie
Algebra.

We can further investigate SO(1, 3) by taking its exponential map representa-
tion.

D(A) = ev (1.3)
Looking back at equation (1.1),
ATypA = = ATpAA T =A™ = ATy =yA"! = ATy =y 1yA?
S ATy = AT (1.4)
Now taking equation (1.4) and applying the exponencial map,
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17—1(61'(4;)T77 _ (eiw)—l - 17_1€in77 _ o iw (1.5)
One of the properties of matrices as exponents is:
eATIBA — A8 4 (1.6)

Therefore applying (1.6) in (1.5) results in

T

W—leiw n= e—iw — eiifleiy — e—iw
- 17_le17 = —Ww < 1717_le17 = —nqw
wTiy = —Nw (1.7)

This restriction from above directly implies that the matrix w necessarily is made
of a symmetric and a anti-symmetric part, then, it can be written as

0 abec 0 0 0 0
a 0 00 0 0 d e

“=1bs 00 0 T 0 —d 0 f|’ a,bde feR (1.8)
c 000 0 —e —f 0

But the above expression still can be simplified in a way more compact way:.

w=aT, +bTy +cTc +dTy +eTe + f]f (1.9)
such that
0100 0010 0001
1000 0000 0000
Li=1loo0o00] " {1000 o000 (1.10)
0000 0 00O 1000
0 0 00 0 0 00 00 0 O
0 0 10 0 0 01 00 0 O
=10 -1 00| 0o 0o 00| " |00 0o 1] @&
0 0 00 0 -1 00 00 -10
Previously we had the restriction on equation (1.3), since detA = 1 and

det A = dete’” = 1. However detel” = ¢/T'@ = 1 which makes Trw = 0.
Making use of index notation for a mathematical object with two indices and us-
ing the fact that the whole w matrix is anti-symmetric, then W' = —whP In a
very similar way it is possible to enumerate the matrices Ja, Ty, Tc, Ty, Te, T

Ta = T01 Td = le
Tb = T02 Te = T13 (112)
TC = T03 Tf = T23

A important thing to notice is how we can completely rewrite the v matrix in
terms of repeated indices,



0 WO 02 03
Byl 0 w2 13

W=1,02 _,12 0 w23
WwB B _wB 0

When performing the sum in index notation of equation (1.9) a factor of 2
appears on the right-hand of the equation, so get rid of it, we divide by a factor
of 2 on both sides of the equation. With all of that in mind we can finally write in
compact notation the w matrix.

1

w = zw“ﬁTaﬁ (1.13)

— D(A) = 2Ty (1.14)

See that the w matrix is part of a linear vector space, which allow us as already
verified on equation (1.9) that every w can be written as a linear combination of
the T, g matrices. By the definition 1.2.3, T, g are the generators of the group, since
generators follow a Lie Algebra, there comes the related Lie Algebra of the SO(1, 3)

group.

o.50(1,3) = {w = %w“ﬁTaﬁ WP = —wﬁ"‘} (1.15)
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