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Chapter 1

A First Sight At The Lorentz Group

1.1 The Lorentz Group

Let there be the set of all matrices 4x4 denominated by L equipped with matrix
multiplication as a operation such that the metric is preserved, i.e, the following
expression is satisfied:

ΛTηΛ = η (1.1)

∀ ∈ L such that η = diag(−1,+1,+1,+1)

Notice how this set L is closed since by taking arbitrary Λ1, Λ2 ∈ L.

=⇒ (Λ1Λ2)
TηΛ1Λ2 = η ⇐⇒ ΛT

1 ΛT
2 ηΛ1Λ2 = η

⇐⇒ ΛT
2 ΛT

1 ηΛ1Λ2 = η

See that in the above equation we’ve just obtained ΛT
1 ηΛ1 which by our initial

restriction ΛT
1 ηΛ1 = η which directly implies,

ΛT
2 ΛT

1 ηΛ1Λ2 = η ⇐⇒ ΛT
2 ηΛ2 = η ∀Λ ∈ L

Looking back to the equation (1.1) and taking its determinant on both sides,
we can clearly draw some conclusions.

ΛTηΛ = η ⇐⇒ det
(

ΛTηΛ
)
= det η

⇐⇒ det ΛT det η det Λ = det η ⇐⇒ det ΛT det Λ = 1

Making the assumption that ΛT = Λ,

=⇒ (det Λ)2 = 1

∴ det Λ = ±1 (1.2)

So L has a group structure, the so called Lorentz Group, but we shall restric-
tic ourselves only to the subset of L such that det Λ = 1 ∀Λ ∈ L that also is
equipped of a group structure. This subset with group structure has a name, it is
denominades as the SO(1, 3).

Definition 1.1.1 (Lorentz Group). The Lorentz Group with restriction det Λ = 1
is called the Special Orthogonal Group of 4x4 matrices.

SO(1, 3) =
{

Λ4x4; Λµ
ν ∈ R, ΛTηΛ = η, det Λ = 1

}
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1.2 Representation Theory and The Lorentz Group

Definition 1.2.1 (Representation). A representation of a group G is a homomor-
phism, i.e, a surjective map, from G to GL(V).

∀g ∈ G; g → D(g) ∈ GL(V)

Properties of a Representation:

Property 1. Multiplication: D(g1)D(g2) = D(g1g2)

Property 2. Identity Element: D(e) = 1

Property 3. Inverse Element: D(g−1) =
[

D(g)
]−1

= D−1(g)

Property 4. Associativity: D(g1)
(

D(g2)D(g3)
)
=

(
D(g1)D(g2)

)
D(g3)

Definition 1.2.2 (Reducible Representations). A representation D exists if there
exists a subspace U, s.t, U ̸= 0. So for every reducible representation we can
write the following:

D(g) =

D(g1) 0 0 · · · 0
0 D(g2) 0 · · · 0

0 0 . . . · · · 0

 ⇐⇒ D(g) = D(g1)⊕ D(g2) · · ·

Otherwise, D(g) is a irreducible representation.

Notice how irreducible representations are way more fundamental and there-
fore hugely interesting in mathematical terms of a physical theory.

One of the most important representations when talking about Lie Groups is
the idea of a exponential map

Definition 1.2.3 (Exponencial Map). The representation of each of the group ele-
ments expressed as a function of parameters αi ∈ R, s.t, each parameter is associ-
ated with a generator.

D(α) = eiαiXi

Xi are the generators related of the respect Lie Group, which follow a Lie
Algebra.

We can further investigate SO(1, 3) by taking its exponential map representa-
tion.

D(Λ) = eiω (1.3)

Looking back at equation (1.1),

ΛTηΛ = η ⇐⇒ ΛTηΛΛ−1 = ηΛ−1 ⇐⇒ ΛTη = ηΛ−1 ⇐⇒ η−1ΛTη = η−1ηΛ−1

∴ η−1ΛTη = Λ−1 (1.4)

Now taking equation (1.4) and applying the exponencial map,
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η−1(eiω)Tη = (eiω)−1 ⇐⇒ η−1eiωT
η = e−iω (1.5)

One of the properties of matrices as exponents is:

eA−1BA = A−1eB A (1.6)

Therefore applying (1.6) in (1.5) results in

η−1eiωT
η = e−iω ⇐⇒ eiη−1ωTη = e−iω

=⇒ η−1ωTη = −ω ⇐⇒ ηη−1ωTη = −ηω

∴ ωTη = −ηω (1.7)

This restriction from above directly implies that the matrix ω necessarily is made
of a symmetric and a anti-symmetric part, then, it can be written as

ω =


0 a b c
a 0 0 0
b 0 0 0
c 0 0 0

+


0 0 0 0
0 0 d e
0 −d 0 f
0 −e − f 0

 ; a, b, d, e, f ∈ R (1.8)

But the above expression still can be simplified in a way more compact way.

ω = aTa + bTb + cTc + dTd + eTe + f J f (1.9)

such that

Ta =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , Tb =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 , Tc =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 (1.10)

Td =


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 , Te =


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 , Tf =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 (1.11)

Previously we had the restriction on equation (1.3), since det Λ = 1 and
det Λ = det eiω = 1. However det eiω = ei Tr ω = 1 which makes Tr ω = 0.
Making use of index notation for a mathematical object with two indices and us-
ing the fact that the whole ω matrix is anti-symmetric, then ωαβ = −ωβα. In a
very similar way it is possible to enumerate the matrices Ja, Tb, Tc, Td, Te, Tf

∴


Ta ≡ T01 Td ≡ T12

Tb ≡ T02 Te ≡ T13

Tc ≡ T03 Tf ≡ T23

(1.12)

A important thing to notice is how we can completely rewrite the ω matrix in
terms of repeated indices,
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ω =


0 ω01 ω02 ω03

ω01 0 ω12 ω13

ω02 −ω12 0 ω23

ω03 −ω13 −ω23 0


When performing the sum in index notation of equation (1.9) a factor of 2

appears on the right-hand of the equation, so get rid of it, we divide by a factor
of 2 on both sides of the equation. With all of that in mind we can finally write in
compact notation the ω matrix.

ω =
1
2

ωαβTαβ (1.13)

=⇒ D(Λ) = e
i
2 ωαβTαβ (1.14)

See that the ω matrix is part of a linear vector space, which allow us as already
verified on equation (1.9) that every ω can be written as a linear combination of
the Tαβ matrices. By the definition 1.2.3, Tαβ are the generators of the group, since
generators follow a Lie Algebra, there comes the related Lie Algebra of the SO(1, 3)
group.

∴ so(1, 3) =
{

ω =
i
2

ωαβTαβ

∣∣∣ωαβ = −ωβα
}

(1.15)
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