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1 INTRODUCTION & FIRST STEPS

1 Introduction & First Steps

U sually in physics and mathematics, one wishes to extremize stuff. That
happens for the first time when studying differential calculus of a single

variable, and also when taking introductory physics courses, in which the trajec-
tory of a cannonball is maximized, the time that an object takes to climb down
an inclined plane is minimized, and energy is a quantity that also is minimized.
In physics, especially in classical mechanics, things tend to be always minimized,
energy, the path between two points, and so forth. That is intrinsically related to
the so-called ’Principle of Least Action’, first stated by William Rowan Hamilton,
it states that the extremization of a quantity called ’action’, establishes the dy-
namics of a physical system1. The Principle of Least Action is the core of physical
theories of modern physics, such as General Relativity, with the Einstein-Hilbert
action, Quantum Mechanics and Quantum Field Theory with the path integral
formulation, which invokes the action principle. However, it is formulated in the
language of functionals, mathematical objects studied by the realm of mathemat-
ics called Functional Analysis.

Definition 1.1 (Linear Functional). Let ∃S; S is a linear functional, then, S is a
linear mapping from the set of all smooth scalar functions F ∈ C∞, to the real
line, i.e, S : F → R.

Somehow, although not formally, functionals have been used without the
knowledge that they were indeed functionals. For instance,

The Riemann integral is a functional on the smooth functions defined on [a, b]
into the real line. So as long as the definition 1.1 is satisfied, functionals can
assume the structure of many mathematical objects.

Example 1:

S[y] =
∫ 1

0
dxex = (e − 1) ∈ R

Example 2:

S[y] =
d sin x

dx

∣∣∣
x=π

= cos x|x=π = −1 ∈ R

1Notice how this principle is very general and does not restrict itself to classical mechanical
systems.
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So one can say that two examples of functionals are integral-like function-
als and derivative-like functionals2. Furthermore, in mathematics and physics,
problems are usually formulated in terms of initial value problems, even though,
sometimes they can be formulated as boundary condition problems, the language
of calculus of variations makes this transition from initial value → boundary con-
dition3 as natural as possible, since fundamentally one is simply solving second
order differential equations.

A natural question to make that transition then is, ”What is a variation?”.
Consider a curve Γ in Rd defined by the parameter t, from t = t1 to t = t2.

Then, for a functional S defined on this curve, the equation that extremizes Γ is
given by the extremals of the S functional.

Definition 1.2 (A Variation). Given a curve Γ defined by a parameter t; t ∈ [t1, t2],
the δ operator acting on q is said to be a variation of the curve Γ if and only if δq
doesn’t have any relation to any t along the curve.

Notice that δq(t1) = 0 = δq(t2) by the seeking of extremum. The definition
1.2 implies that δq ̸= dq, since one can associate dq with a dt. Also, the variation
δ has some properties that are exactly like the total differentiation variation, with
the exception of the one mentioned previously, but one unique property is that
d
dq δ = δ d

dq .

2Although they are not the only type of functionals, a common tool in Quantum Field Theory
in Curved Spacetime is the Functional Renormalization Group.

3Boundary conditions are of much higher interest in physics.
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2 The Euler-Lagrange Equations

F urthermore, now the ground basis has been established to answer the main
question on extremization of a functional defined on a curve in a given

interval. Thus,

δS = δS[q(t) + δq(t)]− S[q(t)] = 0 (1)

Then, taking S as an integral functional of the arbitrary function L, that de-
pends on the coordinates q(t), the first derivative of the coordinate q̇(t), and the
parameter t along the curve.

δS = δ
∫ t2

t1

dtL(qi, q̇i, t) =
∫ t2

t1

dtδL(qi, q̇i, t) = 0 (2)

⇐⇒
∫ t2

t1

dt
{ ∂L

∂qi
δqi +

∂L
∂q̇i

δq̇i +
∂L
∂t

δt
}
=

∫ t2

t1

dt
{ ∂L

∂qi
δq +

∂L
∂q̇i

δq̇i

}
= 0

Separating the integral terms,

∵
∫ t2

t1

dt
∂L
∂q̇i

δq̇i =
[ ∂L

∂q̇i
δq
]t2

t1
−

∫ t2

t1

dt
d

dqi

( ∂L
∂q̇i

)
δqi = −

∫ t2

t1

dt
d

dqi

( ∂L
∂q̇i

)
δqi (3)

=⇒
∫ t2

t1

dt
{ ∂L

∂qi
− d

dqi

( ∂L
∂q̇i

)}
δqi = 0

Which can only be zero, if the integrating term is zero,

∂L
∂qi

− d
dqi

( ∂L
∂q̇i

)
= 0; i = 1, 2, ..., d (4)

These are the famously so-called Euler-Lagrange equations. Given a function
L, the Euler-Lagrange equations, which are second-order differential equations,
have as a solution, the function that extremizes the Γ curve.

In physics, the function L is called the Lagrangian. The L function has some
properties that go as the following,

i ) L = L(q, q̇, t) =⇒ L ∈ C2 .

ii ) L = L∗ =⇒ L is a real scalar function

iii ) In physics, L = T − V

iv ) L is not unique, L′(q, q̇, t) = L(q, q̇, t)+ dλ(q,t)
dt ; gives the same Euler-Lagrange

equations.

The last property is actually a theorem and it can be easily proven.

Theorem 2.1 (Non-uniqueness of L). Let ∃L ∈ C2, such that L is a real scalar func-
tion that obeys the Euler-Lagrange equations, then, ∃L′; L′(q, q̇, t) = L(q, q̇, t) +
dλ(q,t)

dt , in a way that the Euler-Lagrange equations are preserved.

-3-



2 THE EULER-LAGRANGE EQUATIONS

Proof. Consider the S′ functional of the primed L function.

S′ =
∫

dtL′ =
∫

dtL +
∫

dt
dλ

dt
(5)

⇐⇒ S′ = S + λ
∣∣∣t2

t1
(6)

∵ δS′ = δS + δλ
∣∣∣t2

t1
= δS′ = δS +

[∂λ

∂q
δq
]t2

t1
(7)

∴ δS′ = δS

Preserving the Euler-Lagrange equations.

Now, from a physics point of view, that’s not the most general Lagrangian
one could get, for instance, considering a Lagrangian like L = L(q, q̇, q̈, t), how
the seeking extremum of the action functional would change the Euler-Lagrange
equations? Would they still be second-order differential equations?

Varying the action functional of this general Lagrangian,

δS = δ
∫ t2

t1

dtL(q, q̇, q̈) =
∫ t2

t1

dtδL(q, q̇, q̈) = 0 (8)

⇐⇒
∫ t2

t1

dt
{∂L

∂q
δq +

∂L
∂q̇

δq̇ +
∂L
∂q̈

δq̈
}
= 0

The integral of the first two terms is already known,∫ t2

t1

dt
{(∂L

∂q
− d

dt
∂L
∂q̇

)
δq +

∂L
∂q̈

δq̈
}
= 0 (9)

Integrating the last term by parts,

∫ t2

t1

dt
∂L
∂q̈

δq̈ =
[∂L

∂q̈
δq̇
]t2

t1
−

∫ t2

t1

dtδq̇
d
dt

(∂L
∂q̈

)
=

[∂L
∂q̈

δq̇
]t2

t1
+
[∂L

∂q̈
δq
]t2

t1
+

∫ t2

t1

dt
d2

dt2

(∂L
∂q̈

)
δq

∫ t2

t1

dt
∂L
∂q̈

δq̈ =
∫ t2

t1

dt
d2

dt2

(∂L
∂q̈

)
δq (10)

∵
∫ t2

t1

dt
{∂L

∂q
− d

dt

(∂L
∂q̇

)
+

d2

dt2

(∂L
∂q̈

)}
δq = 0 (11)

∴
∂L
∂q

− d
dt

(∂L
∂q̇

)
+

d2

dt2

(∂L
∂q̈

)
= 0 (12)

The equation above represents the fourth-order Euler-Lagrange equations for
a Lagrangian that depends not only on the coordinates and its first derivative but
also on the second derivative of the coordinates. This type of Lagrangian is of
high interest to physics since the Einstein-Hilbert action functional is such that it
depends on the Lagrangian density for the gravitational field, LEH = R

√
g, such

that g is the determinant of the metric tensor and R is the Ricci scalar, a quantity
that measures the presence of matter in curved spacetime, but R = R(g, ∂g, ∂2g),
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making the Einstein-Hilbert Lagrangian density such that obeys a differential4

equation like (12).

If for instance, such Lagrangians can be written as L(q, q̇, q̈) = L̃(q, q̇) + dL̂(q,q̇)
dt

=⇒ S =
∫ t2

t1

dt
(

L̃(q, q̇) +
dL̂(q, q̇)

dt

)
(13)

=⇒ δS = 0 =
∫ t2

t1

dtδ
(

L̃(q, q̇) +
dL̂(q, q̇)

dt

)
=

∫ t2

t1

dtδL̃(q, q̇) + δ
[

L̂(q, q̇)
]t2

t1

=
∫ t2

t1

dtδL̃(q, q̇) +
[∂L̂

∂q
δq
]t2

t1
+

[∂L̂
∂q̇

δq̇
]t2

t1
=

∫ t2

t1

dtδL̃(q, q̇)

δS =
∫ t2

t1

dtδL̃(q, q̇) (14)

Thus, in this special case, the Euler-Lagrange equations become second-order,
as they return to the ordinary case already discussed.

3 Noether’s Theorem

E ven though we are concerned with mathematics, that is not our main con-
cern, what this is all about is mathematical physics. Hence all of the dis-

cussion made so far has some really interesting applications to physics with the
necessary mathematical formalism. Thus, solving the Euler-Lagrange equations
for most of the systems5 can only be done numerically or perturbatively. So what
are the conditions for a system to be solved analytically?

Definition 3.1 (Integral of Motion). An integral motion or constant of motion,
I = I(q, q̇, t) such that dI

dt = 0 ∀q(t), solving equations of motion.

With that definition, the most natural question is, how one knows that a sys-
tem has such equations of motion? It is due to Noether!

Noether’s theorem discusses connections between symmetries and integrals
of motion, in a way that given a parameter ε and δt as a generator, the introduc-
tion of the ε parameter makes it possible to classify different types of symmetries.

Symmetries

{
Discrete(ε discrete) ↛ Conserved quantities
Continuous(ε arbitrariarly small)

Symmetries

{
Global(ε constant) =⇒ Conserved Quantities
Local(ε = ε(t)) =⇒ Gauge Symmetries

Thus, considering transformations like,

t → t′ = t + δ̃t (15)

4However, Einstein’s equations are not fourth-order differential equations, they are second-
order differential equations, this happens because of the conditions imposed onto the geometrical
structure of spacetime

5They can only be solved exactly for analytically integrable systems
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q(t) → q′(t) = q(t) + δ̃q(t) (16)

Such that

δ̃t = ε∆t (17)

δ̃q(t) = ε∆q (18)

So, equations (17) and (18), define the previously mentioned, generators of
symmetries. Hence, the first Noether’s theorem is,

Theorem 3.1 (First Noether’s Theorem). For every global continuous symme-
try of the system, there is a corresponding integral of motion, provided that the
equations are satisfied.

That theorem can be proven for a few physical cases in which one has contin-
uous symmetries. For instance,

Corollary 3.1. If L = L(t) =⇒ L = L(q, q̇), then the energy ca be written as
E = ∂L

∂q̇ q̇ − L is a conserved quantity.

Proof. Since, E = ∂L
∂q̇ q̇ − L, then

dE
dt

=
d
dt

(∂L
∂q̇

q̇ − L
)

= q̇
d
dt

(∂L
∂q̇

)
+

∂L
∂q̇

q̈ − dL
dt

=
d
dt

(∂L
∂q̇

q̇
)
+

∂L
∂q̈

q̈ − ∂L
∂q

q̇ − ∂L
∂q̇

q̈

= q̇
[ d

dt

(∂L
∂q̇

)
− ∂L

∂q

]
= 0

dE
dt

= 0 (19)

Hence, when the Lagrangian of a physical system does not depend on time,
the energy is a conserved quantity of that system, and by the first Noether’s the-
orem, there is a global continuous symmetry associated with it, which is time
translation, because, if t = t + δt, then the equation (19) still holds.

Another immediate example is for cases where L = L(qc), such that qc is a
cyclic coordinate. Thus, generalised momentum, which is defined as p = ∂L

∂qc
, is

an integral of motion, i.e, preserved in time, resulting a global continuous sym-
metry on spatial translations.

Theorem 3.2 (Second Noether’s Theorem). Let ∃δ̃ be a global continuous symme-
try, with any conditions whatsoever imposed, then, δ̃t, δ̃q such that, δ̃S = 0 =⇒
I = ∂L

∂q̇ δ̃q + (L − q̇ ∂L
∂q̇

)
δ̃t, is valid provided that I is an integral of motion.

Proof. First of all, δ̃q ̸= δq. Then, the best picture to think on the theorem is,
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However, when talking about Noether’s theorem, there is no consideration of
fixed end-points. So if one takes a space translation for instance, then the fixed
end-points will move! So they are not truly fixed.

So in Noether’s theorem, the boundary therms do not go to zero, and they actu-
ally have a roll in the conservation game.

δ̃ ̸= δ (20)

Since,

δ̃t = t′ − t =⇒ δ̃dt = dt′ − dt = dδ̃t =
dδ̃t
dt

dt (21)

Hence, a variation of the coordinates is given as,

δ̃q(t) = q′(t′)− q(t) = q′(t) + δ̃t
dq(t)

dt
+ ... − q(t) = δq(t) + δ̃t

dq(t)
dt

(22)

⇐⇒ δ̃ = δ + δ̃t
d
dt

∀ f (q, q̇, t) (23)

and thus, the theorem is proven.
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